
December 2012

MADALGO seminar by Casper Kejlberg-Rasmussen, Aarhus University

I/O-Efficient Planar Range Skyline and Attrition Priority Queues

Abstract:

In the planar range skyline reporting problem, the goal is to store a set P of n 2D points in a structure such
that, given a rectangle Q = [a_1, a_2] \times [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be
reported efficiently. Q is 3-sided if one of its edges is grounded, giving rise to two variants: top-open (b_2 =
\infty) and left-open (a_1 = -\infty) queries.

This paper presents comprehensive results in external memory under the O(n/B) space budget (B is the
block size), covering both the static and dynamic settings:

 For static P, we give structures that support a top-open query in O(\log_B n + k/B),
O(\log\log_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and the rank
space [O(n)]^2, respectively (where k is the number of points reported). The query complexity is
optimal in all cases.

 We show that the left-open case is harder, such that any linear-size structure must incur
\Omega((n/B)^\epsilon + k/B) I/Os to answer a query. In fact, this case turns out to be just as
difficult as the general 4-sided queries, for which we provide a static structure with the optimal
query cost O((n/B)^\epsilon + k/B). Interestingly, these lower and upper bounds coincide with
those of orthogonal range reporting in R^2, i.e., the skyline requirement does not alter the problem
difficulty at all.

 For dynamic P, we present a fully dynamic structure that supports a top-open query in
O(\log_{2B^\epsilon} (n/B) + k/B^{1-\epsilon}) I/Os, and an insertion/deletion in
O(\log_{2B^\epsilon}(n/B)) I/Os, where \epsilon can be any parameter satisfying
0 \le \epsilon \le 1. This result also leads to a dynamic structure for 4-sided queries with the
optimal O((n/B)^\epsilon + k/B) query time, and O(\log (n/B)) amortized update time.

As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure
priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1)
worst-case I/Os, and O(1/B) amortized I/Os per operation. Furthermore, it allows the additional
CatenateAndAttrite operation that merges two PQAs in O(1) worst-case and O(1/B) amortized I/Os. The last
operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory. The new PQA is a
crucial component of our dynamic structure for range skyline reporting.

Joint work with Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas, and Jeonghun Yoon

